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ABSTRACT 

JENNIFER RICE 

PREDICTING STUDENTS’ APPROACH TO KNOWLEDGE BY ANALYZING 
MISCONCEPTIONS AND ERRORS STUDENTS MAKE WRITING PROOFS  

 
DECEMBER 2016 

For this quantitative research study, an existing proof rubric (Selden & Selden, 

1987; Wheeler & Champion, 2011) for students’ errors and misconceptions was used to 

examine students’ proofs in Discrete Mathematics class. Data were collected from two 

classes spanning two semesters, and participants included 27 computer science majors 

and 35 mathematics majors. Through coding of student work, one misconception and two 

errors were identified and used to predict the students’ thinking methodology and its 

impact on proof writing abilities.  
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CHAPTER I 
 

INTRODUCTION 

Purpose of the Study 

One of the most important skills taught in today’s classroom is logic and 

reasoning skills (Gokkurt, Soylu, & Sahin, 2014; National Council of Teachers of 

Mathematics [NCTM], 2000; Weber, 2008). In mathematics, those skills are manifested 

in proof.  

Some experts argue proof is a formal process, while others argue it is the product 

of creativity. Others still claim proof is a combination of both. Despite decades of 

research, there is no consensus in the mathematics-education community about what 

constitutes a mathematical proof (Hanna, 2000; Weber, 2008), but mathematicians accept 

the general characterization that proof begins with a set of axioms and follows well-

defined principles and logical rules to a conclusion (Griffiths, 2000; Weber, 2008). 

In the classroom, proof is the key to mathematical understanding (Hanna, 2000), 

and the measure of a student’s mathematical understanding can be found within each 

student’s construction of proof. Middle school, high school, and entry-level college 

mathematics classes tend to lack formalism within mathematical definitions and proofs 

(Gries & Schneider, 1995; Uhlig, 2002). When students reach college-level introductory 

proof-writing courses, they have little to no experience with proofs and mathematics rigor 

(Uhlig, 2002). Perhaps, this realization explains why many students think of proof as 
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daunting and meaningless when it comes to establishing mathematical knowledge (de 

Villiers, 1991; Gokkurt, et al., 2014).  

The National Council of Teachers of Mathematics, however, identifies proof as 

one of the top five process standards in the Principles and Standards for School 

Mathematics (NCTM, 2000). Proof is, in fact, a fundamental component of mathematical 

concept development, critical to both establishing the validity of an argument and passing 

on mathematical knowledge (Gokkurt, et al., 2002; Rav, 1999; Stylianides, 2007). As a 

result, proof instruction has been scrutinized in recent years, and attempts to understand 

and improve students’ perceptions of proof and proof-writing abilities has been the 

subject of significant research. Through these investigations, the mathematics community 

has a deeper understanding of foundational deficiencies at all levels of education, as well 

as problems with reading, constructing, and validating proof.  

Several studies identify specific errors and underlying misconceptions students 

make when attempting to construct proof (Gokkurt, et al., 2014; Selden & Selden, 1987, 

2003; Wheeler & Champion, 2011). Within these studies, it is interesting to note that 

students who previously performed well in the algorithm-intensive courses that make up 

lower-division mathematics curriculum in most college-mathematics programs often 

realize diminished success when faced with the abstract logic and nontechnical 

complexity of proof writing (Selden & Selden, 1987; Wheeler & Champion, 2011).  

Lower-division college mathematics curriculum is a mixture of mathematical-

concept development and algorithm-rich problem-solving techniques. For the student, the 

challenge to reason through a mathematical idea or concept has not been issued. Instead, 
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the task is to select the appropriate algorithm and apply the algorithm correctly. This type 

of coursework, while necessary, fails to develop reasoning skills or inspire the 

mathematical thinking required for writing proof (Selden & Selden, 1987). 

Computer science students face a similar problem. The development of reasoning 

skills is emphasized in the computer science curriculum, yet algorithm-intensive 

processes embody the world of computer science and contribute largely to algorithmic 

thinking practiced by computer scientists (Knuth, 1974, 1985). 

In 1985, mathematician and computer scientist, Donald Knuth, wondered if 

mathematicians and computer scientists apply different thinking processes to work within 

their respective fields. He conducted a study to compare algorithmic thinking and 

mathematical thinking and ultimately reported multiple differences in the way 

information is processed.  

An algorithmic approach to information, while well organized, may lack 

complexity and vigor since algorithmic processes are fundamentally non-uniform. In 

contrast, mathematical thinking is often inefficient within complex and creative processes 

(Knuth, 1985). In his 1985 article, Algorithmic Thinking and Mathematical Thinking, 

Knuth refers to discipline-specific personality profiles while comparing algorithmic 

thinking with classical mathematical thinking as applied to formula manipulation, 

behavior of function values, abstract reasoning, generalization, and infinite dimensional 

spaces. His hypothesis was that individuals in various disciplines have different thought 

trajectories that chart their work. In other words, mathematicians view things differently 
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than lawyers or culinary artists or writers. Similarly, experts in different fields of science 

have different mental processes and a different approach to knowledge.  

Knuth’s (1985) research established that individuals in the fields of computer 

science and mathematics each employ a variety of modes of thought, some of which 

overlap and some of which are unique to their respective disciplines. Computer scientists 

tend to be fundamentally adept to deal with process states, a skill intimately related to 

algorithmic thinking. Moreover, Knuth suggests that computer scientists are more 

inclined to manage a multitude of non-homogenous cases than a traditional 

mathematician, which further contributes to the notion of algorithmic thinking.  

While computer scientists tend to lack determination with regard to uniformity, 

this can be explained by the fact they are frequently required to manage non-uniform 

concepts fluently. Using this model, distinctive personality profiles can be used to 

differentiate various areas of scientific thinking (Knuth, 1985).  

The purpose of this study is to build on the idea of discipline-specific personality 

profiles as it relates to proof construction. In this study, proofs written by algorithm-

minded students (computer science majors) and mathematically minded students 

(mathematics majors), each with algorithm-intensive and mathematical proof-writing 

course requirements, were compared to determine if a relationship exists between student 

major and the errors and misconceptions revealed when constructing proof in a junior-

level Discrete-Mathematics class. 
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CHAPTER II 

REVIEW OF LITERATURE 

Proof has taken center stage in the mathematics community in recent years as a 

fundamental aspect in mathematics and a core concept in comprehensive and coherent 

mathematics curriculum (Gokkurt, et al., 2014; Inglis & Alcock, 2012; NCTM, 2000; 

Selden & Selden, 2003; Weber, 2008). Leading experts in mathematics have studied, 

defined and redefined, and reimagined the role of proof in mathematics and mathematics 

education.  

Accordingly, substantial research has been devoted to the pedagogical 

development of proof in the classroom (NCTM, 2000; Stylianides, 2007), as well as 

student comprehension of and ability to read and construct proof (Inglis & Alcock, 2012; 

Weber, 2008).  

Previous studies range from surveying the degree of teacher engagement to 

examining student interpretation of the task of proof to observing validations of proof by 

seasoned mathematicians. The results highlight gaps and discrepancies in mathematical 

foundations and the knowledge of proof, as well as offer insight into possible pedagogical 

improvements.  

In 2003, Selden and Selden examined the way students both generate proofs and 

reflect on the texts that establish truth and correctness of the proof. The exploratory study 
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involved 80 university students majoring in mathematics and secondary mathematics 

education. The students were each taking a proof-writing course required for degree 

completion. During the study, students were asked to construct a proof based on a single 

theorem and then reflect on the proof as texts to determine correctness.  

While constructing a proof is difficult in its own right, Selden and Selden (2003) 

illustrate that validating proof as texts goes beyond the rigor of constructing a proof. 

Validations redirect the burden of construction of meaning to the reader. Validations are 

believed to expand the reader’s understanding of a theorem and tend to involve 

passionate consideration of both old and new ideas. It is that intense reflection that 

ultimately results in knowledge construction, thereby bridging the links between one’s 

ideas.  

Upon completion of individual interviews and data analysis, the researchers 

(Selden & Selden, 2003) concluded that students tended to focus on surface features of 

proofs opposed to the underlying logical structure and therefore cannot reliably execute a 

step-by-step validation of a proof without instruction. With minimal guidance, students 

who reflect upon each argument as part of validation demonstrated a significantly higher 

success rate.  

Inglis and Alcock (2012) built on the Selden and Selden (2003) study, comparing 

the proof-validation behavior of beginning undergraduate students and research-active 

mathematicians. In the article, proof was referred to as an onerous process requiring an 

intimate knowledge of mathematical definitions and theorems, and the ability to reason 
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through that knowledge. Each statement requires thorough evaluation until its validity 

can be established. 

Previous findings from proof-validation studies have been based on written 

reports of practicing mathematicians (Weber & Mejia-Ramos, 2013) or verbal procedures 

which required students and mathematicians to speak their thoughts as part of the proof-

validating process (Inglis & Alcock, 2012; Selden & Selden, 2003; Weber, 2008). For the 

Inglis and Alcock (2012) study, the authors recorded the eye movements of participants 

as they validated unsubstantiated proofs in addition to studying the results of the 

validations. Inglis and Alcock note that a proof-reader’s behavior varies according to his 

or her objective. In other words, reading for validation, where the truth of a statement is 

under intense scrutiny, is quite different that reading for comprehension, where the truth 

of a statement is assumed true.  

The Inglis and Alcock (2012) study participants included 18 first-year 

undergraduate students who had successfully completed two semesters of proof-based 

calculus and linear algebra, and 12 academic mathematicians from a high-ranked 

research-intensive university. The proofs used in the study were identical to the Selden 

and Selden (2003) work. 

After analyzing eye-movement data, Inglis and Alcock (2012) found no 

significant difference in the average real-time distribution during validation between the 

two groups. The validations themselves, however, allowed the authors to substantiate 

Selden and Selden’s (2003) claims that undergraduate students cannot consistently 

differentiate between invalid and valid arguments. Furthermore, the undergraduate 
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students focused a disproportionate amount of time on formulas, suggesting the Selden 

and Selden surface-features claim is true. In contrast, the mathematicians’ results 

revealed that the academics failed to agree on the validity of arguments, although it was 

unclear if the disagreements were mathematical in nature or merely style issues. Finally, 

the mathematicians put considerable effort into inferring embedded merits, whereas the 

undergraduate students did not. 

Inglis and Alcock (2012) concluded their article highlighting the inherent 

difficulties that arise when students are unable to consistently and accurately read proof. 

Finally, they acknowledged a deficiency in mathematics education and highlighted a need 

to rethink pedagogical strategies and efforts.  

In 2011, Wheeler and Champion deepened the understanding of students’ errors 

and misconceptions when attempting to write proofs. In their mixed methods study, the 

authors examined one-to-one and onto proofs of 23 undergraduate students all taking an 

abstract algebra class. Errors and misconceptions were identified and coded using an 

adapted version of Selden and Selden’s (1987) rubric of undergraduate students’ proof 

misconceptions and errors.  

The Wheeler and Champion (2011) study findings included that failing to define 

one or more variables within the proof, understanding how to utilize given information to 

write a correct mathematical proof, and distinguishing among different proof formats 

were the most common errors. Furthermore, when students were asked to apply the one-

to-one and onto properties proved to homomorphism, the participants demonstrated 
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considerable difficulty which suggests they memorized the procedures for writing 

specific types of proofs. 

A 2014 qualitative proof-research study by Gokkurt, Soylu, and Sahin 

concentrated on university students studying physics, chemistry, and other fields of 

science. The researchers examined the proof-writing methods of 50 first-year college 

students studying science teaching. The randomly selected participants were challenged 

with three direct, one induction, and two geometry proofs. Student work was 

systematically analyzed using a rule-based coding rubric. Finally, the researchers 

compared and consolidated their results.  

At the end of the year-long study, Gokkurt, Soylu, and Sahin (2014) concluded 

that while students employ multiple different strategies when attempting proof, the 

majority of them attempt to prove by example. In other words, the majority of students 

with a science background believe demonstrating the truth of a statement by inserting 

numerical values is adequate.  

Another study (Stylianides, 2007) evolved the focus of proof development from 

student learning to teacher capability, with the author advocating a robust knowledge of 

proof is vital to proof cultivation among students. The Stylianides analysis emphasized a 

relationship between proof-and-proving and doing-and-knowing mathematics. Proofs are 

the foundation of mathematics. Proof is a fundamental element of developing, 

substantiating and conveying mathematical knowledge (Kitcher, 1984; Stylanides, 2007).  

Before beginning the research, Stylianides (2007) acknowledged a critical 

shortfall in the universe of proof and called for supplementary research dedicated to 
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abstracting a consistent and universal meaning of proof for all grade levels. For this 

project, he established a comprehensive multi-page definition of proof to prevent 

empirical arguments from being considered as proofs. Moreover, the author used the 

definition as a tool to conceptualize how its application could be used to support analysis 

of student and teacher engagement in the classroom, and how the resulting analysis could 

further the role of the teacher in cultivating proof. 

The Stylanides (2007) project consisted of data collected from various physical 

and video archives from 1 third-grade teacher and 22 students for an entire school year. 

He studied video and audiotape lecture analysis, field notes, transcripts, and copies of 

students' work. The relationship between the rigor associated with the mathematical 

argument and an instructional intervention of the teacher was of particular interest. 

Stylianides concluded that teachers must have a robust knowledge of proof to avoid 

accepting empirical arguments as proof. Moreover, teachers must assume an active, 

rather than a passive, role in managing students’ proving activity if students hope to 

develop their proof-writing abilities.  

The emphasis of proof amongst elementary students is vastly different than the 

emphasis for college students, however. The focus shifts from developing a basic 

understanding of mathematics for young students to demonstrating a deep understanding 

of mathematics for college students. As such, the instructor must have a genuine grasp of 

the task at hand.  

In 2012, Fukawa-Connelly explored proof through the lens of the student. The 

author charted a university professor’s lecture-based teaching of proof in an 
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undergraduate abstract algebra course. This study’s primary focus was the way the 

instructor presented proof to students since lecture-based mathematics has been widely 

criticized for proof-based courses (Burton, 1998; Dreyfus, 1999; Fischbein, 1987) and 

has been blamed for students leaving the field of study altogether (Seymour & Hewitt, 

1996). 

For the study, Fukawa-Connelly (2012) chose an expert in the field of 

mathematics with seasoned pedagogical methods and a highly focused objective aimed at 

developing students’ proof-writing abilities. The textbook topics included rings, fields, 

and group theory with a class of third-year undergraduate students with a calculus 

background and at least one introductory proof-writing course completed. The research 

subjects’ methods were evaluated using a framework for proof writing developed by 

Selden and Selden (2003) and Alcock (2010) on methodical approaches to proof writing.  

In the article, Fukaway-Connelly (2012) described the various facets of proof 

writing and the reasoning structure the instructor modeled over 18 class meetings. During 

the observed classes, 29 proofs were constructed. Of the 29 proofs, 21 were constructed 

as the instructor asked questions resulting in student feedback which ultimately produced 

the proof. Student involvement was a large part of the proof presentation. 

According to Fukaway-Connelly (2012), this professor’s instructional sequence 

offered students a different learning environment. The instructor consistently modeled, 

taught and emphasized the modes of thinking necessary in proof writing.  Moreover, the 

professor’s lecturing approach underscored significant “aspects of proof framework, 
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hierarchical structure, and the formal-rhetorical parts of a proof,” presenting a different 

student-learning opportunity (Fukaway-Connelly, 2012, p. 342).  
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CHAPTER III 

METHODOLOGY 

To investigate conjectural differences between computer-science majors’ and 

mathematics majors’ perceptions of proof, data were collected from two Discrete 

Mathematics classes, one in spring 2015 and the other in spring 2016. Discrete 

Mathematics is a junior-level introductory proof-writing course and is a degree-plan 

requirement for both computer science and mathematics degrees at the university under 

study (See Tables 1 and 2 for required mathematics courses for computer science and 

mathematics majors). 

 

Table 1 

Required Mathematics Courses for Bachelor of Science in Computer Science 
Required Course Type Course Description 

 
 

MATH  Calculus 1  

MATH  Discrete Mathematics  

MATH  

    OR MATH  

Matrix Methods 

Probability and Statistics 
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Table 2 

Required Mathematics Courses for Bachelor of Science in Mathematics 
Required Course Type Course Description  

MATH  

MATH  

MATH  

MATH 

MATH  

   OR MATH 

MATH 

MATH 

MATH 

MATH   

Calculus I 

Calculus II 

Discrete Mathematics 

Abstract Algebra 

Linear Algebra 

Matrix Methods 

Elementary Number Theory 

Calculus III 

Differential Equations 

Probability and Statistics 

 

 

 

 The classes observed were taught by the same professor, using the textbook 

entitled Discrete Mathematics (2009) by Johnsonbaugh. A combined total of 62 students 

were observed, 35 mathematics majors and 27 computer science majors. The following 

direct proof was selected, collected from students’ exams, and examined for mistakes:  

 

Prove/Disprove: For every integer, a, if a is even then a + 3 is odd.  
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Previous research suggests that students present a wide range of reasoning errors 

when attempting proof. Some mistakes reflect underlying misconceptions while others 

have technical imperfections or are otherwise wrong. The grading rubric shown in Table 

3 is demonstrative of the views of researchers Annie and John Selden, and was used as a 

guide for identifying and explaining possible underlying misconceptions and to 

generalize ideas behind the errors (Selden & Selden, 1987). The rubric is a modified 

version of the original work of Selden and Selden (1987) and the modified adaption of 

that rubric from Wheeler and Champion (2011). 

Each level of the proof was then examined by the author for problems, compared 

with the rubric and coded with the appropriate misconception(s) or error(s).  
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Table 3 

Misconceptions and Errors in Proof Codes. (Selden & Selden, 1987; Wheeler & Champion,2011). 
Code Misconception/Error Example 

M1 Begin with conclusion Assume 𝑎𝑎 + 3 is odd at the beginning of the proof. 

M5 Confuse real number 

laws 

Conclude 𝑏𝑏
2
 is no in the integers for 𝑏𝑏 in the integers. 

M8 Interfering knowledge Model a direct proof after an onto proof. 

M9 

E1 

E2 

 

E4 

E5 

E6 

E7 

E8 

 

E9 

E11 

E12 

E13 

E14 

NR 

Proof by example 

Misuse of symbols 

Weak statement 

 

Misuse given information 

Circularity 

Unintelligible proof 

Unjustifiable substitution 

Ignore quantifiers 

 

Logical Holes 

Computational errors 

Undefined variables 

Set membership 

Otherwise incorrect 

No response 

Conclude 𝑎𝑎 + 3 by substituting integers.  

Use = in place of ⇒ . 

Use a statement stronger than the hypothesis to prove a 

weaker statement. 

No part of the proof is understandable. 

Reason a statement back to itself. 

No part of the proof is understandable. 

Replacing defined variables with undefined variables.  

Stating a proof holds for all integers when it only holds for 

odds. 

Omit multiple consecutive steps in a logical argument. 

Mathematical errors (usually algebraic). 

Fail to or incorrectly define variables in the proof. 

Fail to verify an inverse element is in the domain. 

Wrong or meaningless statement. 

No attempt  
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Variables 

Dependent Variable 

The dependent variable in this study is the declared major of each participant: 

computer science or mathematics. Since the dependent variable is categorical with only 

two possible values, binary logistic regression is the appropriate modeling approach. 

Statistical Packages for the Social Sciences (SPSS) was used to run analysis of the data. 

The dependent variable was entered into SPSS as a dichotomous variable and assigned a 

nominal value. 

 
Table 4 
Dependent Variable Encoding 
Original 
Value 
 

Internal Value 
 

CS 0 
Math 1 

 

 
Independent Variables 

The continuous independent variables in the study are the 17 misconceptions and 

errors typically found in students’ proofs and previously identified in the proof-coding 

rubric in Table 3. Each independent predictor variable was entered into SPSS as a 

quantitative nominal variable. Errors were recorded for E6: unintelligible proof, E11: 

computational errors, and M9: proof by example; Table 5. The other variables had no 

influence or no significance on the model therefore were removed.  
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Table 5 
 
Independent Variables  

 Independent Variables 
 

 Description 
   

  M9c  Proof by example   
E6c Unintelligible proof   
E11c Computational errors   

 
 

Logistic Regression 

Since the dependent variable in this study is dichotomous, analysis using the 

standard regression model,  𝜇𝜇𝑦𝑦 = 𝛽𝛽0 +  𝛽𝛽1𝑥𝑥 ,  could produce extreme values that fall 

outside the possible range of values, 𝑝𝑝, 0 ≤ 𝑥𝑥 ≤ 1, and therefore is not a good fit, 

(Hosmer, Lemeshow, & Sturdivant, 2013; Moore, McCabe & Craig, 2006). Logistic 

regression is a method of modeling the relationship between a binary categorical response 

variable and one or more continuous or categorical explanatory variables. The model is 

used to analyze the explanatory variables and predict the categorical outcome.  

The logistic regression model employs a ratio of proportions for the possible 

outcomes, referred to as odds:  

Odds = 
𝑝𝑝

1− 𝑝𝑝
 

where 𝑝𝑝 represents the proportion of one outcome, and 1− 𝑝𝑝 represents the proportion of 

the remaining outcome.  

Logistic regression then takes the natural logarithm of the odds proportion  

 Log odds or logit = log� 𝑝𝑝
1− 𝑝𝑝� =  𝐵𝐵0 +  𝐵𝐵1𝑥𝑥 
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which confines possible outcome values, and then the inverse log odds or logit function 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1𝑥𝑥 =  
𝑒𝑒𝑥𝑥

1 + 𝑒𝑒𝑥𝑥 =
1

1 + 𝑒𝑒−𝑥𝑥 

converts the output to values within the appropriate range,  0 ≤ 𝑥𝑥 ≤ 1.  

Finally, logistic regression is modeled as: 

𝑝𝑝(𝑦𝑦𝑖𝑖 = 1) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝑋𝑋𝑖𝑖𝐵𝐵) 

where 𝑝𝑝 represents the probability, 𝑦𝑦𝑖𝑖 represents the ith observed value for the response 

variable and (𝑋𝑋𝑖𝑖𝐵𝐵) represents the linear predictor (Menard, 2010; Moore, McCabe & 

Craig, 2006). 

Hypothesis 

The purpose of this study is to determine if the discipline-unique modes of 

thought associated with participants whose primary field of study is either computer 

science or mathematics impacts reasoning abilities associated with proof construction.  

𝐻𝐻0: Personality profiles associated with college major (computer science or 

mathematics) have no impact on undergraduate students’ proof-writing abilities.  

𝐻𝐻1: Personality profiles associated with college major (computer science or 

mathematics) impacts undergraduate students’ proof-writing abilities. 

This research will compare proof-writing reasoning performance of students with 

a declared major of either computer science or mathematics in two Discrete Mathematics 

classes. Previous studies suggest that computer scientists cling to an algorithmic approach 

to information (Knuth, 1985) which may limit creative processes required in proof 

construction (Selden & Selden, 1987; Wheeler & Champion, 2011). Therefore, the 
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expected results of this study were that participants with a background in mathematics 

would outperform participants with a background in computer science.    
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CHAPTER IV 

RESULTS 

Chapter IV presents descriptive statistics and binary logistic regression analysis of 

the data, including descriptive and output tables. The data were analyzed using Statistical 

Packages for the Social Sciences (SPSS).  

Descriptive Statistics 

Descriptive statistics of the dependent variable is presented in Table 6 and 

descriptive statistics of predictor variables are presented in Table 7. Study participants 

were categorized by their primary field of study: 43.5% computer science majors and 

56.4% mathematics majors. Table 7 shows the number of mistakes and errors participants 

demonstrated when constructing a direct proof.  

 

Table 6 

Descriptive Statistics of Participants 
Groups N Percent    

Computer Science Majors 27 43.5    

Mathematics Majors 35 56.4    
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Table 7 

Descriptive Statistics of Predictor Variables 
Predictors N mistakes or errors Percent 

M9: Proof by example  
 

 

     Computer Science 3 4.8 

     Mathematics 0 0 

E6: Unintelligible proof    

     Computer Science 6 9.7 

     Mathematics 2 3.2 

E11: Computational error   

     Computer Science 7 11.3 

     Mathematics 4 6.5 

Total mistakes and errors   

     Computer Science 16 25.8 

     Mathematics 6 9.7 

 

Logistic Regression Analysis 

A successful logistic regression model allows for prediction of an outcome based 

on various predictor variables. The data output will indicate if the predictor variable(s) 

have a statistically significant effect on the prediction, and if so, how well the model 

predicts the outcome.  

The first tables produced by SPSS are the Block 0: Beginning Block (Table 8), 

Variables in the Equation (Table 9), and Variables not in the Equation (Table 10). The 
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Block 0 output excludes predictor variables and assumes all participants are math majors. 

This model, sometimes called the intercept model or null model, establishes a baseline, or 

point of reference, by which to compare the effectiveness of the model once predictor 

variables are introduced. If this was the only model available, the assumption would 

correctly classify 35
62
≈ 56.5% percent of all cases.  

 

Table 8 

Block 0: Beginning Block 

Classification Tablea,b 
 

Observed 

                     Predicted 
 groups 

          Percentage Correct  CS Math 
Step 0 groups CS 0 27 .0 

Math 0 35 100.0 
Overall Percentage   56.5 

a. Constant is included in the model. b. The cut value is .500 
 
 

The predicted odds of success, represented in Table 9, column Exp(B), is 35
27
≈

1.296.  In the absence of predictor variables, the model has no statistical significance at 

𝑝𝑝 = .311  with 1 degree of freedom.  

 

Table 9 

Variables in the Equation 
 B S.E. Wald df Sig. Exp(B) 
Step 0 Constant .260 .256 1.026 1 .311 1.296 
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Table 10 presents the predictor variables that will be introduced in the SPSS 

secondary output, Block 1: Method = Forward Stepwise (Likelihood Ratio). The 

variables M9c, E6c, and E11c are statistically significant at 𝑝𝑝 < .05 with 1 degree of 

freedom.  

 

Table 10 

Variables not in the Equation 

 
Score 

 
df 
 

Sig. 
 

Step 0 Variables M9c 4.087 1 .043 
E6c 5.018 1 .025 
E11c 4.413 1 .036 

Overall Statistics 15.540 3 .001 

 

 
With the introduction of predictor variables, the model takes a more compelling 

shape. Block 1 output begins with the Omnibus Tests of Model Coefficients, a likelihood 

ratio chi-square test of the current model’s statistical significance versus that of the 

intercept or null model (IBM, 2013). Each step indicates the addition of a new predictor 

variable. SPSS includes the variable E6c in step 1, E6c and M9c in step 2, and E6c, M9c, 

and E11c in step 3.  

The results shown in Table 11 reveal a chi-square with 1 degree of freedom, 

𝜒𝜒2(1) = 5.128, and a significance value of 𝑝𝑝 = .024 in step 1; a chi-square with 2 degrees 

of freedom, 𝜒𝜒2(2) = 11.277, and a significance value of 𝑝𝑝 = .004 in step 2; and finally a 
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chi-square with 3 degrees of freedom, 𝜒𝜒2(3) = 17.435, and a significance value of 𝑝𝑝 =

.001  in step 3. 

The step and block rows compare the -2 log likelihood of the newest model to the 

previous version to determine if the new variables are causing improvement. In each step, 

the chi-square test statistic produces a significance-level decrease which suggests that 

each new model, with the addition of a new predictor variable, more accurately predicts 

the outcome than the previous model. While each model is better than the last, the model 

in step 3 with all three independent variables has the greatest degree of statistical 

significance. Therefore, the decision is to reject the null hypothesis.   

 

Table 11 

Block 1: Method Enter = Forward Stepwise (Likelihood Ratio) 

Omnibus Tests of Model Coefficients 

 

Chi-
square 

 
df 
 

Sig. 
 

Step 1 Step 5.128 1 .024 
Block 5.128 1 .024 
Model 5.128 1 .024 

Step 2 Step 6.149 1 .013 
Block 11.277 2 .004 
Model 11.277 2 .004 

Step 3 Step 6.158 1 .013 
Block 17.435 3 .001 
Model 17.435 3 .001 
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The Model Summary, shown in Table 12, provides the -2 log likelihood, an 

approximation of how poorly the model predicts success, and the pseudo-𝑅𝑅2 values 

which approximate how much variation in the predicted outcome is explained by the new 

model. This study’s model is represented in step 3 in Tables 12-16.  

The -2 log likelihood is 67.480 in step 3, a decrease from the previous steps. The 

desired result with the -2 log likelihood is small statistic, and the decrease from step 1 to 

step 3 indicates improvement in this study’s model. The pseudo-𝑅𝑅2values, Cox & Snell 

𝑅𝑅2 = .245 and Nagelkere 𝑅𝑅2= .329, indicates that the predictor variables explain between 

24.5% and 32.9% of the variation and suggest a moderate to strong correlation between 

the variables.   

 

Table 12 

Model Summary 

Step 
 

-2 Log 
likelihood 

 

Cox & Snell 
R Square 

 

Nagelkerke 
R Square 

 
1 79.787a .079 .106 
2 73.638b .166 .223 
3 67.480b .245 .329 
a. Estimation terminated at iteration number 4 
because parameter estimates changed by less 
than .001. b. Estimation terminated at iteration 
number 20 because maximum iterations has 
been reached. Final solution cannot be found. 
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The Hosmer and Lemeshow Test, shown in Table 13, assesses the model’s 

goodness of fit, or how accurately the data fits the model. The desired result with the 

Hosmer-Lemeshow Test is a large statistic, p > .05. The step 3 model results show a 

Hosmer-Lemeshow chi-square with 2 degrees of freedom, 𝜒𝜒2(2) = .150, and the results 

are not statistically significant at  𝑝𝑝 = .928 which suggests the model is a good fit.   

 

Table 13 

Hosmer and Lemeshow Test 

Step 
 

Chi-
square 

 
df 
 

Sig. 
 

1 .000 0 . 
2 .000 1 1.000 
3 .150 2 .928 

 
 

The Classification Table, Table 14, represents the observed and predicted 

classification for the model. Binomial logistic regression estimates the probability of an 

event occurring based on specific parameters established within the model. In this study, 

the probability of a participant being a mathematics major is based on the occurrence or 

non-occurrence of two specific errors and one misconception within the proof. If the 

estimated probability is greater than 50%, SPSS classifies the participant as a math major.  

The SPSS baseline or null output correctly predicted 56.5%. Once predictor 

variables were added to the model, the proportion of cases correctly predicted increased 

to 17
27
≈ 63.0 % for computer science majors, and 29

35
≈ 82.9 % for mathematics majors. 
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Overall, the model correctly predicted 46
62
≈ 74.2 % of the cases, an increase of 31% over 

the null model.   

 

Table 14 

Classification Tablea 
 

Observed 

Predicted 
 groups 

Percentage Correct  CS Math 
Step 1 groups CS 7 20 25.9 

Math 2 33 94.3 
Overall 
Percentage 

  64.5 

Step 2 groups CS 10 17 37.0 
Math 2 33 94.3 

Overall 
Percentage 

  69.4 

Step 3 groups CS 17 10 63.0 
Math 6 29 82.9 

Overall 
Percentage 

  74.2 

a. The cut value is .500 
 
 

The impact each variable has on the model is seen in Table 15, Variables in the 

Equation. This table shows the joint association between each variable through the 

regression coefficient (B), the Wald statistic, and the odds ratio. The Wald statistic 

determines statistical significance between the variables. The variables E6c and E11c 

added significantly to the model prediction with p=.019 and p=.017 respectively. While 
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M9c, with p=.999, did not add statistical significance by itself, it contributed to the 

overall correlation and helped improve the overall predictive power of the model.    

The B coefficients are useful for predicting the probability of an event occurring. 

This statistic represents the log odds for each one-unit change in an independent variable 

when all others are constant. All three predictive variables have a negative B value which 

suggests the likelihood of a mathematics student making the mistake is low.  

The odds ratio, represented by Exp (B), expresses the change in odds for each 

one-unit increase of the independent variable. The variable E6c odds ratio is Exp(B) = 

.124, however, the inverted odds ratio, 1
Exp(B) =  1

.124 ≈ 8.06  may be easier to interpret. 

The inverted ratio suggests that for each decrease in one unit of this variable, the odds of 

the participant being a mathematics major increases by a factor of 8.06. In other words, a 

mathematics major is 8.06 times less likely to make this mistake than a computer science 

major. The variable E11 has an odds ratio Exp(B) = .184 and an inverted odd ratio 1
.184 ≈

5.43 which indicates that a mathematics major is 5.43 times less likely to make this 

mistake than a computer science major.  
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Table 15 

Variables in the Equation 

 
B 
 

S.E. 
 

Wald 
 

df 
 

Sig. 
 

Exp(B) 
 

Step 1a E6c -1.754 .850 4.252 1 .039 .173 
Constant .501 .283 3.123 1 .077 1.650 

Step 2b M9c -21.866 23205.422 .000 1 .999 .000 
E6c -1.916 .856 5.016 1 .025 .147 
Constant .663 .299 4.936 1 .026 1.941 

Step 3c M9c -22.285 23205.422 .000 1 .999 .000 
E6c -2.088 .887 5.537 1 .019 .124 
E11c -1.691 .710 5.667 1 .017 .184 
Constant 1.082 .366 8.751 1 .003 2.950 

a. Variable(s) entered on step 1: E6c. 
b. Variable(s) entered on step 2: M9c. 
c. Variable(s) entered on step 3: E11c. 

 

Hypothesis Results 

 
𝐻𝐻0: Personality profiles associated with computer science or mathematics have no 

impact on undergraduate students’ proof-writing abilities.  

𝐻𝐻1: Personality profiles associated with computer science or mathematics impacts 

undergraduate students’ proof-writing abilities. 

A binomial logistic regression was performed to ascertain the effects of 

algorithmic and mathematical modes of thinking on the likelihood that participants are 

collegiate mathematics majors. The logistic regression model was statistically significant, 

𝜒𝜒2(3) = 17.435, 𝑝𝑝 = .001. The model explained 32.9 % ( Nagelkerke 𝑅𝑅2) of the variance 

and the overall positive-predictive value was 74.9%. The model correctly predicted 63% 

of computer science majors and 82.9% of mathematics majors.  
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Of the three predictor variables, two were statistically significant: E6c, 

unintelligible proof and E11c, computational errors. Mathematics majors were 8.06 times 

less likely to write an unintelligible proof and 5.43 times less like to make computational 

errors in proof than computer science majors. Based on this analysis, the model 

successfully discriminated between the two disciplines and therefore established a 

connection between the modes of thinking and ability to construct proof. The decision is 

to reject the null hypothesis and accept the alternative.  
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CHAPTER V 

DISCUSSION 

In this study, mistakes and errors found in undergraduate students’ proofs were 

used to predict how students traditionally associated with an algorithmic or mathematical 

approach to thinking would perform when constructing proofs. Current literature has 

documented a wide range of difficulties associated with learning to write proof, but none 

have linked modes of thinking to the process. This idea is significant since it has been 

established that most undergraduate-mathematics courses are substantially algorithmic 

which contributes to an algorithmic approach to knowledge.  

Despite the small number of possible mistakes and errors considered in this study, 

the results are revealing. This study is based on three independent predictor variables: one 

potential mistake, and two potential errors participants make when attempting to write a 

direct proof. Of the three predictors, two are serious and suggest the student has a poor 

understanding of proof.  

The severe error is logically unintelligible proof (E6). This type of error presents 

itself as a series of mathematical statements and symbols, however, neither the individual 

statements nor the proof in its entirety can be understood. Moreover, the statements are 

unintelligible or incorrect. The severe mistake is proof by example, (M9). This type of 

mistake presents itself as a demonstration of the general statement and implies that 

because the statement is true for one case, it is true for all cases.  
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Of the proofs written by computer science participants in this study, one in three 

contained a severe mistake or error, whereas mathematics majors’ proofs contained one 

serious mistake or error for every 17.5 proofs constructed (Table 7). This represents a 

substantial difference between computer science majors’ and mathematics majors’ 

demonstration of proof-writing competence.   

Limitations and Future Research 

Mathematics History 

The mathematics background of each student was not included in this study. 

Aside from a prerequisite for Calculus 1, no other college mathematics history is 

assumed. It is possible the students had a diverse range of exposure to formal proof prior 

to Discrete Mathematics, which could impact the outcomes.  Future studies could include 

each students’ mathematics history from high school- to college-level courses. Moreover, 

students’ previous exposure to proof should be measured and considered a significant 

contributing factor.  

Sample 

For this study, a single direct proof from the second exam was collected, coded, 

and analyzed. Proofs taught in this Discrete Mathematics class ranged from mathematics 

induction, one-to-one proofs, onto proofs, divisibility proofs, as well as other direct and 

indirect proofs.  It is possible that exploring a larger sample containing a variety of proofs 

could produce different results.  

Another sample concern is that participants were not randomly chosen; the 

sample was collected from two Discrete Mathematics classes from two semesters. The 
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reason for this is the sample was taken from a university with a small mathematics and 

computer science department and Discrete Mathematics is only offered once per 

academic year and sometimes in the summer.  It is widely recognized that unfavorable 

sampling techniques have the potential for bias contamination; therefore, future studies 

could be designed to incorporate randomization within the sample.  

 Finally, while the sample for mathematics majors was large enough at 𝑛𝑛 = 35, the 

sample of computer science participants was smaller than desired at 𝑛𝑛 = 27. It is 

possible that a larger sampling of computer science majors could alter the results. 

Conclusion 

This study produced a good model for predicting a students’ approach to 

knowledge based on mistakes and errors produced in proof construction. Future studies 

could include mathematics backgrounds of students which could impact the way the 

proof-writing course is designed, as well as prerequisites for the class. 
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